Graphs on unlabelled nodes with a given number of edges
نویسندگان
چکیده
منابع مشابه
On the Number of Certain Subgraphs Contained in Graphs with a given Number of Edges
All graphs considered are finite, undirected, with no loops, no multiple edges and no isolated vertices. For two graphs G, H, let N(G, H) denote the number of subgraphs of G isomorphic to H. Define also, for l >=0, N(I,H)= max N(G, H), where the maximum is taken over all graphs G with l edges. We determine N(l, H) precisely for all l -> 0 when H is a disjoint union of two stars, and also when H...
متن کاملThe Asymptotic Number of Labeled Connected Graphs with a Given Number of Vertices and Edges
Let c(n, q) be the number of connected labeled graphs with n vertices and q 5 N = ( ) edges. Let x = q/n and k = q n. We determine functions w k 1 , a(x ) and cp(x) such that c (n , q) w k ( z ) e n r p ( x ) e o ( x ) uniformly for all n and q 2 n. If Q > O is fixed, n+= and 4q > ( 1 + ~ ) n log n, this formula simplifies to c(n, q) ( t ) exp(-ne-zq’n). On the other hand, if k = o(n”’), this f...
متن کاملEla on the Estrada Index of Graphs with given Number of Cut Edges
Let G be a simple graph with eigenvalues λ1, λ2, . . . , λn. The Estrada index of G is defined as EE(G) = ∑ n i=1 ei . In this paper, the unique graph with maximum Estrada index is determined among connected graphs with given numbers of vertices and cut edges.
متن کاملOn the Estrada index of graphs with given number of cut edges
Let G be a simple graph with eigenvalues λ1, λ2, . . . , λn. The Estrada index of G is defined as EE(G) = ∑ n i=1 ei . In this paper, the unique graph with maximum Estrada index is determined among connected graphs with given numbers of vertices and cut edges.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematica
سال: 1971
ISSN: 0001-5962
DOI: 10.1007/bf02392023